2019年是著名数学家、中国科学院院士、首届国家最高科学技术奖获得者吴文俊(1919-2017)先生诞辰100周年。吴文俊先生在拓扑学、数学机械化和中国数学史研究领域做出了划时代的成就,为我国的现代数学事业和数学史学科发展做出了卓越的贡献。
上世纪70年代,吴文俊先生将研究兴趣转向中国古代数学。他以敏锐的目光和深邃的思想把中国传统数学的特点概括为构造性与机械化,不仅将其成功地应用于数学机械化新领域,成为古为今用、自主创新的典范,而且也开创和引领了继李俨(1892—1963)、钱宝琮(1892—1974)之后中国数学史研究的新局面。自1975年吴先生发表第一篇数学史论文后,他在报刊和杂志上陆续发表了多篇数学史重要论文,并且在多部数学史著作的序言中阐明自己对中国传统数学及其研究方法的认识,逐渐形成了独到的具有鲜明时代特色、影响深远的数学史认识论和方法论,即“吴文俊数学史观”, 为弘扬中国古代数学文化作出了巨大贡献 。
1975年,吴文俊先在他第一篇数学史论文《中国古代数学对世界文化的伟大贡献》使用了笔名“顾今用”。记得当年有一天,我在原中科院数学所大楼四层走廊里碰见吴先生时问他:“顾今用是您吧?”他神秘地笑了笑,然后握着拳头神情严肃地说了一句:“准备战斗!”我当时没有理解这句话的意义,现在看得很清楚了: 先生在逼近花甲之年,以战斗的姿态和科学的热情,古为今用,开创了数学机械化的崭新领域;同时以战斗的姿态,亲自深入数学史研究,以揭示历史本来面目为己任,为弘扬中国古代数学文化作出了巨大贡献。
古为今用”——开创数学机械化的新领域
所谓“古为今用”,就是要从历史上的数学思想方法中获得借鉴和教益,以历史借鉴和教益来促进现实的数学研究,这是数学史研究的重要意义和价值之所在。吴文俊的数学史研究自始至终都自觉地贯彻了“古为今用”的原则,这是他学术研究的鲜明特点,其数学机械化理论的创立就是在“古为今用”的原则指导下将数学史研究成果应用于现代数学研究而取得的卓越成就。
根据吴先生的自述,他的“数学机械化”思想与早先尝试几何定理的机器证明,主要有三个方面的历史来源:
(一) 中国传统数学中的几何代数化
“解方程”在中国古代数学中有着悠久的传统。《九章算术》中就有用“开方术”和“方程术”(线性联列方程组的消元解法)解各种应用问题。《九章算术》的“方程术”在宋元时期被发展为“四元术”,即解多元代数方程组的消元算法。正如吴文俊本人所说:
“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻。虽然这是极其原始的,但是,仅就著者本人而言,主要是受中国古代数学的启发。”
(二) 笛卡尔《几何学》的“通用数学”与机械化思想
吴文俊认为,古希腊欧几里得几何的证明模式是从定义和公理出发,按照逻辑规则逐步演绎推断,几何证明过程中没有通用的证明法则,只能一题一证,根据不同的问题构思不同证明的方法。笛卡尔(Rene Descartes,1596—1650)的《几何学》却对希腊演绎模式进行了批判,企图以代数改造几何,给出了不同于《几何原本》的证明模式,开创了可用计算进行几何定理证明的新局面,从而将演绎几何引向解析几何。事实上,解析几何是其“通用数学”(mathesis universalis)实现在几何学上的一个案例。笛卡尔建立“通用数学”的目的是实现其以下宏伟计划:
任何问题→数学问题→代数问题→方程求解(多个未知量→单个未知量)
笛卡尔这一大胆计划反映在其著名的哲学著作《更好地指导推理和寻求科学真理的方法论》(1637)以及稍早未完成的著作《指导思维的法则》之中,《几何学》不过是《方法论》的附录。在吴文俊的论文与讲演中多次征引笛卡尔的这一计划。“笛卡尔计划”的核心纲领是将多元代数方程组化为一元代数方程,然后用机械化的方法求解。显然,笛卡尔并没有意识到这一计划在具体实现过程中存在困难,他在《几何学》中虽然尽力采用机械作图法来求解一元高次方程,但对多元代数方程组如何化为一元代数方程没有给出具体方法。直到18世纪末,多元高次代数方程消元法才出现在法国学者E·裴蜀(E. Bézout,1730—1783)等一些数学家的书中,然而西方数学界直到今日仍没有给出完整的方法来求解非线性多项式方程组,只有17世纪日本数学家关孝和(1642?—1708)在中国宋元天元术基础上建立了比较粗糙的解多元高次方程组的消元方法(称之为解伏题),但其方法仅局限于在日本流传,没有对西方近现代数学产生影响。

年轻时的吴文俊院士
吴文俊正是在解多元高次方程组方面取得了重要突破,他创造的“三角化整序法”是目前唯一完整的非线性多项式方程组消元解法,在国际数学界被称为“吴方法”,而“吴方法”的思想恰恰来自中国古代数学的启示,特别是受到元代数学家朱世杰(1249—1314)的“四元术”的启示。吴文俊明确指出:
“我解方程的方法基本上可以说是从朱世杰那儿来的,他用消去法,一个个消元,方法上可以说有个原始的样板。当然朱世杰没有什么理论,很粗糙;我发展下来,有一个真正现代数学的基础,就是代数几何。”
他不仅说明了自己数学创造的思想来源,同时也启示我们,从“历史借鉴”升华到“理论创新”,不仅需要数学家有敏锐的历史洞察力,而且更需要有高度的独创性思维。吴文俊正是借助现代代数几何的理论和工具,打破了代数几何领域中的理想论论式传统,恢复了零点集论式,建立了“三角化整序法”,在现代代数几何的基础上发展了中国古代“四元术”的消去法。以上这些构成了吴文俊“数学机械化”思想的主要内容。
(三) 希尔伯特的《几何基础》中的机械化定理
希尔伯特(David Hilbert,1862—1943)的《几何基础》(Grundlagen der Geometrie,1899)将几何学引进更抽象的公理化系统,不仅将欧几里得《几何原本》的公理系统加以改良,而且把几何学从一种具体的特定模型上升为抽象、普遍的数学理论,该书可谓论述几何公理化的经典性著作。但是,吴文俊在该书中发现,希尔伯特明言: 同一类几何定理可以用统一的方法一起证明,不必逐一进行证明。而且其中含有一条连希尔伯特本人可能都未意识到的机械化定理: 初等几何中只涉及从属于平行关系的定理,可以机械化证明。如果引入适当的坐标,其统一的证明方法则可以通过算法来实现。《几何基础》一直以来都被奉为现代公理化方法的经典,甚至与《几何原本》一样成为公理化的代名词,然而其中却包含算法化的思想。吴文俊正是从中获得了几何定理机械化证明的思想借鉴。这充分反映出吴文俊对历史典籍考察分析的敏锐眼光和思想深度。
吴文俊创立数学机械化理论是当代研究与历史借鉴完美结合而取得重大发明创造的范例。其从数学史研究到创立和完善数学机械化理论的过程及其中的一些细节,是值得数学史与数学工作者认真研究和探讨的课题。
数学主流性——弘扬中国古代数学文化的旗手
大约从1975年起,吴文俊的研究兴趣开始转向中国古代数学史,他认真研读了《九章算术》《数书九章》《四元玉鉴》等中算经典,发表了一系列中国数学史研究论著,这些论著思想深邃,见解深刻,更自始至终贯穿着中国古代数学对世界数学主流的贡献这一个重大主题。吴文俊此方面的数学史论著在国内外引起了巨大反响,开辟了中国数学史研究的新时代。
(一) 论证中国古代数学的“主流性”
欲全面、充分地理解吴文俊有关“中国古代数学对世界数学主流的贡献”论断的深刻意义与学术影响,需要分析其进入中国数学史领域之前该研究领域的状况。事实上,在其研究工作之前,中国数学史研究已经历了两个性质不同的阶段。
由于东西方文化的差异,加之欧洲中心主义的影响和对中国数学了解的局限性,西方学术界在相当长的时期内对中国传统数学持有偏见。起初他们认为中国古代不存在本土数学,直到20世纪初才开始关注中国古代数学,如西方数学史家康托(M. Cantor,1829—1920)、斯密斯(D.E. Smith,1860—1944)、卡约里(F. Cajori,1859—1930)等人的著作中开始设立专门章节以描述中国古代数学,但内容过于简单且不成体系。所述内容基本上依据赫师慎(Louis van Hée,1873—1951)等17世纪以后来华传教士们的著述和日本学者三上义夫(1875—1950)的研究东亚数学史的论著。 笔者将此阶段(19世纪中叶至20世纪初)称之为“存在性”阶段。
康托、斯密斯、卡约里以及三上义夫等人的著作对于帮助西方人了解中国古代数学起到了积极作用,但局限于他们对中国古代数学研究的深度,他们的工作还不能回答中国古代数学是否具有“独立性”的问题,仍有一些西方学者对此存有疑问,甚至提出中国古代数学来源于古巴比伦、古印度、古希腊的谬论。
现代意义上的中国数学史研究开始于20世纪20年代,代表人物是李俨(1892—1963)、钱宝琮(1892—1974),以及西方的李约瑟(Joseph Needham,1900—1995)。其中李约瑟的工作在西方学术界影响更大。1959年,李约瑟在中国学者王玲(1917—1994)的协助下,出版了《中国的科学与文明·数学天文地学卷》(Science and Civilisation in China,Volume 3)。在这部划时代的巨著中,李约瑟以大量的令人信服的史料和证据,全面系统整理、论述中国古代科学技术的成就,阐明中国文明对世界文明的巨大贡献。书中通过对中西数学进行分析比较,对西方学界流行的中国古代数学来源于古巴比伦或古希腊之说予以批驳,而且还通过考证客观地分析了古代中国与印度两大文明间的数学交流。他认为,公元前250年至公元1250年的一千五百年间,从中国传出去的数学知识远比域外传入中国的数学知识多得多。此观点后来逐渐为一些公正的西方学者所接受。笔者称此阶段(20世纪30年代至20世纪中叶)为“独立性”阶段。尽管中国数学的独立性被西方学术界所承认,但对中国传统数学的偏见依然存在。例如,1972年,美国著名的数学史家M·克莱因(Morris Kline,1908—1992)出版了《古今数学思想》一书,该书在西方学术界颇有影响。但作者在该书的前言中却称:
“我忽略了几种文化,例如中国的、日本的和玛雅的文化,因为他们的工作对于数学思想的主流没有影响。”
由此可见,西方学术界对中国传统数学的偏见和误解根深蒂固,只是将争论、否定的焦点转移到了所谓“数学思想的主流”这一问题上。如果不辩证、澄清数学思想“主流性”这一问题,自然就不会正确认识中国古代数学的意义和地位。吴文俊恰好于20世纪70年代初期进入中国数学史研究领域,正是他的研究工作才揭示出中国古代数学对世界数学思想发展主流的影响及其贡献。因此,吴文俊的工作开辟了中国数学史研究的新时代。 |